

Snap-Loc Spacers & Accessories T&B Catalog Number:

UPC Number: Status: Description: S288NHN 03448100433 Active

4 inch x 1-1/2 inch Snap-Loc non-metallic base spacer. **Features**

yways incorporated into intermediate minate the need for costly top spacers in g keyways provide for the use of a bead- at secures the top section of the conduit. in. Snap-Loc reducers enable fixturing of a. conduit inside larger spacers. rebar holder provides stabilization on s of spacers. Duct Spacers provide stability, consistent and relieve direct stress for duct materi- d in concrete and direct-buy applications. ic Snap-Loc Spacers are designed for use with non-metallic duct, with max- dimensions as specified in NEMA TC-2,
at secures the top section of the conduit. in. Snap-Loc reducers enable fixturing of a. conduit inside larger spacers. rebar holder provides stabilization on s of spacers. Duct Spacers provide stability, consistent and relieve direct stress for duct materi- d in concrete and direct-buy applications. ic Snap-Loc Spacers are designed for use with non-metallic duct, with max-
in. Snap-Loc reducers enable fixturing of a. conduit inside larger spacers. Tebar holder provides stabilization on s of spacers. Duct Spacers provide stability, consistent and relieve direct stress for duct materi- d in concrete and direct-buy applications. ic Snap-Loc Spacers are designed for use with non-metallic duct, with max-
 a. conduit inside larger spacers. bebar holder provides stabilization on s of spacers. buct Spacers provide stability, consistent and relieve direct stress for duct materi- d in concrete and direct-buy applications. ic Snap-Loc Spacers are designed for use with non-metallic duct, with max-
ebar holder provides stabilization on s of spacers. Duct Spacers provide stability, consistent and relieve direct stress for duct materi- d in concrete and direct-buy applications. ic Snap-Loc Spacers are designed for use with non-metallic duct, with max-
s of spacers. Duct Spacers provide stability, consistent and relieve direct stress for duct materi- d in concrete and direct-buy applications. ic Snap-Loc Spacers are designed for use with non-metallic duct, with max-
and relieve direct stress for duct materi- d in concrete and direct-buy applications. ic Snap-Loc Spacers are designed for use with non-metallic duct, with max-
and relieve direct stress for duct materi- d in concrete and direct-buy applications. ic Snap-Loc Spacers are designed for use with non-metallic duct, with max-
3, and ASTM F512.
tive vertical and horizontal interlock- oc design has tapered joining slots with colerances for easy jobsite assembly.
ic
per 100
ber 100
36
36
S.

For further technical assistance, please contact us...

Thomas & Betts - USA 8155 T&B Blvd. Memphis, TN 38125 www.tnb.com T&B Technical Support MS 3B-50 8155 T&B Blvd. Memphis, TN 38125 Hours: 7AM - 6PM CDT Monday-Friday Phone: (888) 862-3289 Fax: (901) 252-1321 Email:techsupport@tnb.com